Selasa, 20 Desember 2016
Kamis, 04 Agustus 2016
INTEGRAL TRIGONOMETRI SELAIN SIN DAN COS
gimana sih menyelesaikan integral trigonometri selain sin dan cos?
Catatan : 1 + tan2 x = sec2 x
cot2
x + 1 = cosec2 x
contoh :1) ʃ tan6 x dx
=ʃ
tan4 x. tan2 x dx
=
ʃ tan4 x (sec2 x – 1) dx
=
ʃ tan4 x. sec2 x –
tan4 x dx
=
ʃ tan4 x. sec2 x- tan2
x (sec2 – 1) dx
=
ʃ tan4 x . sec2 x – tan2 x. sec2 x +
tan2 x dx
=
ʃ tan4 x. sec2 x – tan2 x.
sec2 x + sec2 x – 1 dx
Substitusi aturan biasa
Missal : u = tan x
du = sec2 x dx
= ʃ tan4
x sec2 x dx + ʃ tan2 x
sec2 x dx + ʃ sec2 x -1 dx
= ʃ u4 du - ʃ u2
du + tan x – x + C
= ʃ 1/5 tan5 x - 1/3 tan3
x + tan x – x + C
2)
ʃ cot3 x dx
=
ʃcot x. cot2 x dx
=
ʃ cot x ( cosec2 x -1) dx
=
ʃ cot x . cosec2 x dx – ʃ cot x dx
= ʃ cot x
cosec2 x dx - ʃ cos x / sin x dx
Missal : u = cot x
du = cos2 x dx
missal : u = sin x
du = cos x dx
=
ʃ -1/2 cot2 x – | ln sin x| + C
-
ʃ tanm x . secn x
dx
-
ʃ cotm x . cosecn
x dx
1)
n bilangan genap positif , m sembarang bilangan
contoh :
ʃ cot -1/2 x . cosec4
x dx
=ʃ cot -1/2 x . (1 + cot2 x) . cosec2
x dx
= ʃ (cot -1/2 x + cot 3/2 x ) . cosec2
x dx
Missal : u = cot
x
du =
- cosec2 x dx
= - ʃ u -1/2 + u 3/2 du
= - 2 cot 1/2 x – 2/5 cot 3/2 x + C
2)
m bilangan ganjil positif , n sembarang bilangan
contoh :
ʃ tan3 x . sec x
dx
= ʃ tan2 x. tan x.sec x. sec x dx
= ʃ (sec2 x + 1). . tan x. sec x dx
= ʃ sec2 x . tan x. sec x
dx + ʃ tan x. sec x dx
= ʃ sec2 x . tan x. sec x dx + ʃ sin x / cos2 x
dx
Missal : u = sec x
du = tan x . sec x dx
missal
: u = cos x
du
= - sin x dx
= ʃ
u2 du + ʃ - du/u2
= 1/3 u3 + C + 1/u + C
= 1/3
sec3 x + 1/cos x + C
selamat berlatih :))
INTEGRAL TRIGONOMETRI ( PANGKAT GANJIL, GENAP, DAN LANJUTAN )
nah, sakarang kita bahas integral trigonometri yang sederhana dulu, seperti :
-
PANGKAT GENAP
Contoh :
ʃ sin 2 x dx = ʃ ½ (1-cos 2x) dx
= ½ ʃ 1- cos 2x dx
= ½ (x-1/2
sin 2x) + C
cos
2x = cos 2 x – sin 2
x
= 1- 2 sin 2 x
2 sin2
x = 1- cos 2x
Sin2 x = ½ (1-cos 2x)
Sin2 x = ½ (1-cos 2x)
-
PANGKAT GANJIL
Contoh :
ʃcos5 x dx = ʃ cos4 x . cos x dx
= ʃ ( 1 -
sin2 x)2 . cos x dx
= ʃ (1 - 2sin2 x + sin4
x ). Cos x dx
Missal:
u=sin x
du = cos x dx
= ʃ 1 – 2u2 + u4
du
= u – 2/3 u + 1/5 u5 + C
= sin x – 2/3 sin3 x + 1/5
sin5 x + C
cos2 x + sin2 x = 1
cos2 x = 1- sin2 x
(cos2 x)2 = (1- sin2 x)2
cos4 x = (1- sin2 x)2
cos2 x + sin2 x = 1
cos2 x = 1- sin2 x
(cos2 x)2 = (1- sin2 x)2
cos4 x = (1- sin2 x)2
-
PANGKAT LANJUTAN
Contoh :
ʃ Sin5 x . cos-3
x dx (syarat
salah satu pangkat harus ganjil positif)
= ʃsin4 x. cos-3 x. sin x dx
= ʃ (1 – cos2 x )2 . cos-3x.
sin x dx
= ʃ (cos-3 x – 2 cos -1 x + cos x ) . sin
x dx
Missal : u = cos x
du =
-sin x dx
= ʃ u-3 – 2 u-1 + u du
= - ʃ (-1/2 u-2 – 2 |ln u| + ½ u2) + C
= ½ cos-2 x + 2 |ln cos x| - ½ cos2 x + C
Contoh lain :
ʃsin2 x. cos2 x
dx (kedua pangkat harus genap positif)
=
ʃ1/2 (1- cos 2x ) . ½ (1+cos 2x) dx
=1/4 ʃ
1- cos2 2x dx
=¼
ʃ ½ (1 – cos 4x) dx
=1/8
ʃ 1 – cos 4x dx
=1/8
(x – ¼ sin 4x ) + C
selamat berlatih :))
Langganan:
Postingan (Atom)