Kamis, 04 Agustus 2016

INTEGRAL TRIGONOMETRI SELAIN SIN DAN COS



gimana sih menyelesaikan integral trigonometri selain sin dan cos?

Catatan : 1 + tan2 x = sec2 x
            cot2 x + 1 = cosec2 x

contoh :1) ʃ tan6 x dx

            =ʃ tan4 x. tan2 x dx

            = ʃ tan4 x (sec2 x – 1) dx

            = ʃ tan4  x. sec2 x – tan4 x dx

            = ʃ tan4 x. sec2 x- tan2 x (sec2 – 1) dx

            = ʃ tan4 x . sec2 x – tan2 x. sec2 x + tan2 x dx

            = ʃ tan4 x. sec2 x – tan2 x. sec2 x + sec2 x – 1 dx

                        Substitusi                                aturan biasa

            Missal : u = tan x
                        du = sec2 x dx

            = ʃ tan4 x sec2 x dx + ʃ tan2 x sec2 x dx + ʃ sec2  x -1 dx

            = ʃ u4 du - ʃ u2 du + tan x – x + C

            = ʃ 1/5 tan5 x - 1/3 tan3 x + tan x – x + C

            2) ʃ cot3 x dx 

            = ʃcot x. cot2  x dx

            = ʃ cot x ( cosec2 x -1) dx

            = ʃ cot x . cosec2 x dx – ʃ cot x dx

            = ʃ cot x cosec2 x dx - ʃ cos x / sin x dx

            Missal : u = cot x
                        du = cos2 x dx

            missal : u = sin x
                        du = cos x dx

            = ʃ -1/2 cot2 x – | ln sin x| + C


-          ʃ tanm x . secn x dx

-          ʃ cotm x . cosecn x dx

1)      n bilangan genap positif , m sembarang bilangan

contoh :

ʃ cot -1/2 x . cosec4 x dx

=ʃ cot -1/2 x . (1 + cot2 x) . cosec2 x dx

= ʃ (cot -1/2 x + cot 3/2 x ) . cosec2 x dx

      Missal : u = cot x
                  du = - cosec2 x dx

= - ʃ u -1/2 + u 3/2 du

= - 2 cot 1/2 x – 2/5 cot 3/2 x + C

2)      m bilangan ganjil positif , n sembarang bilangan

contoh :

ʃ tan3 x . sec x dx

= ʃ tan2 x. tan x.sec x. sec x dx

= ʃ (sec2 x + 1). . tan x. sec x dx

= ʃ sec2 x . tan x. sec x dx + ʃ tan x. sec x dx

= ʃ sec2 x . tan x. sec x dx + ʃ sin x / cos2 x dx


      Missal : u = sec x
                  du = tan x . sec x dx

      missal : u = cos x
                  du = - sin x dx

= ʃ u2 du + ʃ  - du/u2

= 1/3 u3 + C + 1/u + C

= 1/3 sec3 x + 1/cos x + C

selamat berlatih :))

INTEGRAL TRIGONOMETRI ( PANGKAT GANJIL, GENAP, DAN LANJUTAN )


 nah, sakarang kita bahas integral trigonometri yang sederhana dulu, seperti :

-          PANGKAT GENAP

Contoh :

ʃ sin 2 x dx = ʃ ½ (1-cos 2x) dx                         

                   = ½ ʃ 1- cos 2x dx  
                                                          
                  = ½ (x-1/2 sin 2x) + C   
                                 
cos 2x   = cos 2 x – sin 2 x
   = 1- 2 sin 2 x
       2 sin2 x  = 1- cos 2x 
          Sin2 = ½ (1-cos 2x)
                                                                         
-          PANGKAT GANJIL

Contoh :

ʃcos5 x dx = ʃ cos4 x . cos x dx  
                        
                 = ʃ ( 1 - sin2 x)2 . cos x dx     
                             
                  = ʃ (1 - 2sin2 x + sin4 x ). Cos x dx     
             
            Missal: u=sin x                                                 
                        du = cos x dx

                  = ʃ 1 – 2u2 + u4 du  
                                                       
                  = u – 2/3 u + 1/5 u5 + C

                  = sin x – 2/3 sin3 x + 1/5 sin5 x + C
cos2 x + sin2 x = 1
    cos2 x = 1- sin2 x
   (cos2 x)2 = (1- sin2 x)2
  cos4 x = (1- sin2 x)2

 

-          PANGKAT LANJUTAN

Contoh :

ʃ Sin5 x . cos-3 x dx  (syarat salah satu pangkat harus ganjil positif)

= ʃsin4 x. cos-3 x. sin x dx

= ʃ (1 – cos2 x )2 . cos-3x. sin x dx

= ʃ (cos-3 x – 2 cos -1 x + cos x ) . sin x dx


Missal :         u = cos x
                        du = -sin x dx

= ʃ u-3 – 2 u-1 + u du

= - ʃ (-1/2 u-2 – 2 |ln u| + ½ u2) + C

= ½ cos-2 x + 2 |ln cos x| - ½ cos2 x + C

Contoh lain :

ʃsin2 x. cos2 x dx (kedua pangkat harus genap positif) 

= ʃ1/2 (1- cos 2x ) . ½ (1+cos 2x) dx

=1/4 ʃ 1- cos2 2x dx

=¼ ʃ ½ (1 – cos 4x) dx

=1/8 ʃ 1 – cos 4x dx

=1/8 (x – ¼ sin 4x ) + C

selamat berlatih :))